
Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

Safely Shoot Yourself in
the Foot with Java 9

Dr Heinz M. Kabutz  
Last Updated 2017-11-04

1

Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

! Make the Java SE Platform, and the JDK, more easily
scalable down to small computing devices;

! Improve the security and maintainability of Java SE Platform
Implementations in general, and the JDK in particular;

! Enable improved application performance; and

! Make it easier for developers to construct and maintain
libraries and large applications, for both the Java SE and EE
Platforms.

Project Jigsaw: Primary Goals (Reinhold)

2

Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

! Java was supposed to be 100% secure

! In early versions we often had to code JNI

! sun.misc.Unsafe introduced to allow JDK implementers to
– Create objects without calling their constructors
– Allocate large blocks of native memory and free it again
– Read and write memory locations directly using CAS (peek & poke)
– Fences
– Throw exceptions unchecked
– Release native buffer resources (Java 9)

So What Can We Do in Java?

3

Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

! ConcurrentLinkedQueue.Node in Java 5 and 6

Evolution of "Unsafe" Usage

4

private static class Node<E> {
 private volatile E item;
 private volatile Node<E> next;

 private static final AtomicReferenceFieldUpdater<Node, Object> itemUpdater =
 AtomicReferenceFieldUpdater.newUpdater(Node.class, Object.class, "item");

 E getItem() { return item; }

 boolean casItem(E cmp, E val) {
 return itemUpdater.compareAndSet(this, cmp, val);
 }

 void setItem(E val) {
 itemUpdater.set(this, val);
 }
}

Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

! ConcurrentLinkedQueue.Node in Java 7 and 8

Evolution of "Unsafe" Usage

5

private static class Node<E> {
 volatile E item;
 volatile Node<E> next;

 boolean casItem(E cmp, E val) {
 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
 }

 void lazySetNext(Node<E> val) {
 UNSAFE.putOrderedObject(this, nextOffset, val);
 }

 boolean casNext(Node<E> cmp, Node<E> val) {
 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
 }
 // but there's more ...

Huh?

Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

Pointer Arithmetic Into Memory Location

6

 private static final sun.misc.Unsafe UNSAFE;
 private static final long itemOffset;
 private static final long nextOffset;

 static {
 try {
 UNSAFE = sun.misc.Unsafe.getUnsafe();
 Class k = Node.class;
 itemOffset = UNSAFE.objectFieldOffset(k.getDeclaredField("item"));
 nextOffset = UNSAFE.objectFieldOffset(k.getDeclaredField("next"));
 } catch (Exception e) {
 throw new Error(e);
 }
 }
}

Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

! ConcurrentLinkedQueue.Node in Java 9

java.util.concurrent.* Cleaned Up

7

static final class Node<E> {
 volatile E item;
 volatile Node<E> next;

 boolean casItem(E cmp, E val) {
 return ITEM.compareAndSet(this, cmp, val);
 }
}
static final VarHandle ITEM;
static {
 try {
 MethodHandles.Lookup l = MethodHandles.lookup();
 ITEM = l.findVarHandle(Node.class, "item", Object.class);
 } catch (ReflectiveOperationException e) {
 throw new Error(e);
 }
}

Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

Unsafe in Java 7

8

Java 7
java.io.* 1
java.lang.** 7
java.math.* 1
java.net.* 3
java.nio.* 28
java.util.* 1
java.util.concurrent.** 29
java.util.zip.* 0
Total 70

Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

Unsafe in Java 7, 8

9

Java 7 Java 8
java.io.* 1 2
java.lang.** 7 5
java.math.* 1 2
java.net.* 3 3
java.nio.* 28 28
java.util.* 1 1
java.util.concurrent.** 29 36
java.util.zip.* 0 0
Total 70 77

Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

Unsafe in Java 7, 8, 9

10

Java 7 Java 8 Java 9
java.io.* 1 2 3
java.lang.** 7 5 29
java.math.* 1 2 2
java.net.* 3 3 3
java.nio.* 28 28 67
java.util.* 1 1 2
java.util.concurrent.** 29 36 8
java.util.zip.* 0 0 1
Total 70 77 114

Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

! CAS operations on non-final fields
– Varying levels of reads and writes

• get/setPlain (non-volatile field semantics)
• get/setOpaque
• getAcquire/setRelease
• get/setVolatile (volatile field semantics)

– Fences (Full, Acquire/Release, LoadLoad, StoreStore)

! http://gee.cs.oswego.edu/dl/html/j9mm.html

Java 9 VarHandles

11

Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

! Supports LongAdder and LongAccumulator
– Creates Cell[] to hold values

• Expands on each CAS failure
• Maximum Cell[].length bound by Runtime.availableProcessors()
• Cell objects are marked with @Contended, so very large

– Threads are allocated permanently to a particular Cell
• How?

Quick Striped64 Tutorial

12

Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

! Introduced in Java 7 to improve on Math.random()
– Thread-local pseudo random series
– Very fast
– Initially used ThreadLocal as implementation

• Slow table lookup on every current() call

! Java 8 stores ThreadLocalRandom fields inside Thread
– Also protected with @Contended against false sharing

• We'll get back to @Contended later

ThreadLocalRandom

13

Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

! Striped64 needs to get direct access to a field in Thread
– We want to avoid Unsafe
– VarHandles typically for fields in our class

• includes inner classes

Migration to Java 9

14

Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

! Free license to latest mini-course on Java.NIO using Java 9

! Free subscription to The Java Specialists Newsletter

! http://tinyurl.com/javaday17

Expires End Of This Talk

15

Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

! MethodHandles.privateLookupIn() FTW

Demo of Changing String with VarHandles

16

Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

! Who likes seeing these?

Turning Off Those Annoying Warnings

17

WARNING: An illegal reflective access operation has occurred
WARNING: Illegal reflective access using Lookup on ChangeString

to class java.lang.String
WARNING: Please consider reporting this to the maintainers of ChangeString
WARNING: Use --illegal-access=warn to enable warnings of further illegal

reflective access operations
WARNING: All illegal access operations will be denied in a future release

Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

! java --add-opens java.base/java.lang=ALL-UNNAMED ...

Warnings Be Gone!

18

Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

! To map a file into memory, do this:

! To unmap the file, wait for buf to be eligible for GC
– A PhantomReference called Cleaner will release the native memory

! Demo of how to unmap in Java 7/8 and now in 9

MappedByteBuffer Unmapping

19

RandomAccessFile raf = new RandomAccessFile(filename, "rw");
FileChannel fc = raf.getChannel();
MappedByteBuffer buf = fc.map(
 FileChannel.MapMode.READ_WRITE, offset, length);

Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

! We still have jcmd, jconsole, jstat, jmap, jstack

! VisualVM is available separately on Github
– https://visualvm.github.io/download.html

! Oh, also -Xrunhprof gone
– Although -Xprof remains for now
– But we will have Java Flight Recorder / Java Mission Control soon

• Plan for this to be open sourced as soon as possible

JVisualVM Gone in Java 9

20

Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

Making Our Own Fields @Contended

21

import jdk.internal.vm.annotation.Contended;

public class HighlyContended {
 private int before;
 @Contended
 private volatile int value;
 private int after;

 public int getValue() {
 return value;
 }

 public void setValue(int value) {
 this.value = value;
 }
}

Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

Compiling Causes Errors

22

heinz$ javac HighlyContended.java
HighlyContended.java:1: error: package
jdk.internal.vm.annotation is not visible
import jdk.internal.vm.annotation.*;
 ^
 (package jdk.internal.vm.annotation is declared in module
java.base, which does not export it to the unnamed module)
1 error

Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

! We compile like so

! And run with

--add-exports To The Rescue

23

javac --add-exports java.base/jdk.internal.vm.annotation=ALL-UNNAMED \
 HighlyContended.java

java -XX:-RestrictContended HighlyContendedTest

Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

! --add-opens allows "deep reflection" on elements

! --add-exports allows access to public classes, methods and
fields

– --add-opens implies --add-exports
– Both will be removed in a future version of Java (maybe)

--add-opens vs --add-exports

24

Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

! Stream.takeWhile(Predicate)

! Stream.dropWhile(Predicate)

! Stream.iterate(seed, Predicate, UnaryOperator)

! Don't use with parallel streams!

Java 9 Stream Changes

25

IntStream.generate(() -> ThreadLocalRandom.current()
 .nextInt(0, 50))
 .takeWhile(i -> i < 45)
 .forEach(System.out::println);

IntStream.iterate(0, i -> i <= 30, i -> i + 2)
 .forEach(System.out::println);

Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

! A REPL to make Java more accessible to novices

! Quick Demo

! Tips:
– Let EDITOR environment variable point to your favourite editor
– Startup is slow, as all the referenced classes are compiled for

scripting. Once it's warmed up, execution is Java speed

jshell For Scripting

26

Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

! Start by defining a file exit.jsh that contains one line "/exit"

! First line in your file is this

! Notes
– Any parameters you pass in are interpreted as script names
– jshell always returns 0, even with System.exit(1)

• --execution local makes System.exit(val) return val

! Thanks to Christian Stein for discussions around this

Hacking jshell For Unix Style Scripting

27

//$JAVA_HOME/bin/jshell --execution local --startup DEFAULT PRINTING $0 $@ exit.jsh; exit

Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

! Java 8 deprecated incremental CMS
– Removed in Java 9

! Java 9 deprecated CMS

! Default GC is now G1GC instead of Parallel Throughput
– G1GC is child's play to configure

• Set maximum pause time
• Set maximum heap
• You're done!

GC Changes

28

Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

! Let's say we want to make square() public
– Java 8, we could patch our version in using -Xbootclasspath
– Java 9, we need to create a patch for java.base

Hacking BigInteger

29

Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

! Step 1: Compile the hacked BigInteger version

– (Optional) Dependency in IntelliJ to shut off compiler warnings

! Step 2: Compile our code against the patched BigInteger

! Step 3: Run our code against the patched BigInteger

Hacking BigInteger

30

javac --patch-module java.base=BigMathHack/src \
 -d BigMathHack/mypatches/java.base BigMathHack/src/java/math/BigInteger.java

javac --patch-module java.base=BigMathHack/mypatches/java.base \
 -d out/production/FootShootJava9 --source-path src src/BigIntegerTest.java

java --patch-module java.base=BigMathHack/mypatches/java.base \
 -cp out/production/FootShootJava9 BigIntegerTest

Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

Questions?
Dr Heinz M. Kabutz 

Email: heinz@javaspecialists.eu 
Twitter: @heinzkabutz

31

Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

! Free license to latest mini-course on Java.NIO using Java 9

! Free subscription to The Java Specialists Newsletter

! http://tinyurl.com/javaday17

Expires End Of This Talk

32

