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! Make the Java SE Platform, and the JDK, more easily 
scalable down to small computing devices; 

! Improve the security and maintainability of Java SE Platform 
Implementations in general, and the JDK in particular; 

! Enable improved application performance; and 

! Make it easier for developers to construct and maintain 
libraries and large applications, for both the Java SE and EE 
Platforms.

Project Jigsaw: Primary Goals (Reinhold)
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! Java was supposed to be 100% secure 

! In early versions we often had to code JNI 

! sun.misc.Unsafe introduced to allow JDK implementers to 
– Create objects without calling their constructors 
– Allocate large blocks of native memory and free it again 
– Read and write memory locations directly using CAS (peek & poke) 
– Fences 
– Throw exceptions unchecked 
– Release native buffer resources (Java 9)

So What Can We Do in Java?
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! ConcurrentLinkedQueue.Node in Java 5 and 6

Evolution of "Unsafe" Usage
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private static class Node<E> { 
  private volatile E item; 
  private volatile Node<E> next; 

  private static final AtomicReferenceFieldUpdater<Node, Object> itemUpdater = 
    AtomicReferenceFieldUpdater.newUpdater(Node.class, Object.class, "item"); 

  E getItem() { return item; } 

  boolean casItem(E cmp, E val) { 
    return itemUpdater.compareAndSet(this, cmp, val); 
  } 

  void setItem(E val) { 
    itemUpdater.set(this, val); 
  } 
}
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! ConcurrentLinkedQueue.Node in Java 7 and 8

Evolution of "Unsafe" Usage
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private static class Node<E> { 
  volatile E item; 
  volatile Node<E> next; 

  boolean casItem(E cmp, E val) { 
    return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val); 
  } 

  void lazySetNext(Node<E> val) { 
    UNSAFE.putOrderedObject(this, nextOffset, val); 
  } 

  boolean casNext(Node<E> cmp, Node<E> val) { 
    return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val); 
  } 
  // but there's more ...

Huh?
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Pointer Arithmetic Into Memory Location
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  private static final sun.misc.Unsafe UNSAFE; 
  private static final long itemOffset; 
  private static final long nextOffset; 

  static { 
    try { 
      UNSAFE = sun.misc.Unsafe.getUnsafe(); 
      Class k = Node.class; 
      itemOffset = UNSAFE.objectFieldOffset(k.getDeclaredField("item")); 
      nextOffset = UNSAFE.objectFieldOffset(k.getDeclaredField("next")); 
    } catch (Exception e) { 
      throw new Error(e); 
    } 
  } 
}
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! ConcurrentLinkedQueue.Node in Java 9

java.util.concurrent.* Cleaned Up
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static final class Node<E> { 
  volatile E item; 
  volatile Node<E> next; 

  boolean casItem(E cmp, E val) { 
    return ITEM.compareAndSet(this, cmp, val); 
  } 
} 
static final VarHandle ITEM; 
static { 
  try { 
    MethodHandles.Lookup l = MethodHandles.lookup(); 
    ITEM = l.findVarHandle(Node.class, "item", Object.class); 
  } catch (ReflectiveOperationException e) { 
    throw new Error(e); 
  } 
} 
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Unsafe in Java 7
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Java 7
java.io.* 1
java.lang.** 7
java.math.* 1
java.net.* 3
java.nio.* 28
java.util.* 1
java.util.concurrent.** 29
java.util.zip.* 0
Total 70
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Unsafe in Java 7, 8
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Java 7 Java 8
java.io.* 1 2
java.lang.** 7 5
java.math.* 1 2
java.net.* 3 3
java.nio.* 28 28
java.util.* 1 1
java.util.concurrent.** 29 36
java.util.zip.* 0 0
Total 70 77
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Unsafe in Java 7, 8, 9
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Java 7 Java 8 Java 9
java.io.* 1 2 3
java.lang.** 7 5 29
java.math.* 1 2 2
java.net.* 3 3 3
java.nio.* 28 28 67
java.util.* 1 1 2
java.util.concurrent.** 29 36 8
java.util.zip.* 0 0 1
Total 70 77 114
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! CAS operations on non-final fields 
– Varying levels of reads and writes 

• get/setPlain (non-volatile field semantics) 
• get/setOpaque 
• getAcquire/setRelease 
• get/setVolatile (volatile field semantics) 

– Fences (Full, Acquire/Release, LoadLoad, StoreStore) 

! http://gee.cs.oswego.edu/dl/html/j9mm.html

Java 9 VarHandles
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! Supports LongAdder and LongAccumulator 
– Creates Cell[] to hold values 

• Expands on each CAS failure 
• Maximum Cell[].length bound by Runtime.availableProcessors() 
• Cell objects are marked with @Contended, so very large 

– Threads are allocated permanently to a particular Cell 
• How?

Quick Striped64 Tutorial
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! Introduced in Java 7 to improve on Math.random() 
– Thread-local pseudo random series 
– Very fast 
– Initially used ThreadLocal as implementation 

• Slow table lookup on every current() call 

! Java 8 stores ThreadLocalRandom fields inside Thread 
– Also protected with @Contended against false sharing 

• We'll get back to @Contended later

ThreadLocalRandom
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! Striped64 needs to get direct access to a field in Thread 
– We want to avoid Unsafe 
– VarHandles typically for fields in our class 

• includes inner classes

Migration to Java 9
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! Free license to latest mini-course on Java.NIO using Java 9 

! Free subscription to The Java Specialists Newsletter 

! http://tinyurl.com/javaday17

Expires End Of This Talk
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! MethodHandles.privateLookupIn() FTW

Demo of Changing String with VarHandles
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! Who likes seeing these?

Turning Off Those Annoying Warnings
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WARNING: An illegal reflective access operation has occurred 
WARNING: Illegal reflective access using Lookup on ChangeString  

to class java.lang.String 
WARNING: Please consider reporting this to the maintainers of ChangeString 
WARNING: Use --illegal-access=warn to enable warnings of further illegal  

reflective access operations 
WARNING: All illegal access operations will be denied in a future release 
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! java --add-opens java.base/java.lang=ALL-UNNAMED ...

Warnings Be Gone!
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! To map a file into memory, do this: 

! To unmap the file, wait for buf to be eligible for GC 
– A PhantomReference called Cleaner will release the native memory 

! Demo of how to unmap in Java 7/8 and now in 9

MappedByteBuffer Unmapping
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RandomAccessFile raf = new RandomAccessFile(filename, "rw"); 
FileChannel fc = raf.getChannel(); 
MappedByteBuffer buf = fc.map( 
  FileChannel.MapMode.READ_WRITE, offset, length);
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! We still have jcmd, jconsole, jstat, jmap, jstack 

! VisualVM is available separately on Github 
– https://visualvm.github.io/download.html 

! Oh, also -Xrunhprof gone 
– Although -Xprof remains for now 
– But we will have Java Flight Recorder / Java Mission Control soon 

• Plan for this to be open sourced as soon as possible

JVisualVM Gone in Java 9
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Making Our Own Fields @Contended
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import jdk.internal.vm.annotation.Contended; 

public class HighlyContended { 
  private int before; 
  @Contended 
  private volatile int value; 
  private int after; 

  public int getValue() { 
    return value; 
  } 

  public void setValue(int value) { 
    this.value = value; 
  } 
}
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Compiling Causes Errors
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heinz$ javac HighlyContended.java  
HighlyContended.java:1: error: package 
jdk.internal.vm.annotation is not visible 
import jdk.internal.vm.annotation.*; 
                      ^ 
  (package jdk.internal.vm.annotation is declared in module 
java.base, which does not export it to the unnamed module) 
1 error
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! We compile like so 

! And run with

--add-exports To The Rescue
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javac --add-exports java.base/jdk.internal.vm.annotation=ALL-UNNAMED   \ 
  HighlyContended.java

java -XX:-RestrictContended HighlyContendedTest
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! --add-opens allows "deep reflection" on elements 

! --add-exports allows access to public classes, methods and 
fields 

– --add-opens implies --add-exports 
– Both will be removed in a future version of Java (maybe)

--add-opens vs --add-exports

24
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! Stream.takeWhile(Predicate) 

! Stream.dropWhile(Predicate) 

! Stream.iterate(seed, Predicate, UnaryOperator) 

! Don't use with parallel streams!

Java 9 Stream Changes

25

IntStream.generate(() -> ThreadLocalRandom.current() 
    .nextInt(0, 50)) 
    .takeWhile(i -> i < 45) 
    .forEach(System.out::println);

IntStream.iterate(0, i -> i <= 30, i -> i + 2) 
    .forEach(System.out::println);
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! A REPL to make Java more accessible to novices 

! Quick Demo 

! Tips: 
– Let EDITOR environment variable point to your favourite editor 
– Startup is slow, as all the referenced classes are compiled for 

scripting.  Once it's warmed up, execution is Java speed

jshell For Scripting

26
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! Start by defining a file exit.jsh that contains one line "/exit" 

! First line in your file is this  

! Notes 
– Any parameters you pass in are interpreted as script names 
– jshell always returns 0, even with System.exit(1) 

• --execution local makes System.exit(val) return val 

! Thanks to Christian Stein for discussions around this

Hacking jshell For Unix Style Scripting
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//$JAVA_HOME/bin/jshell --execution local --startup DEFAULT PRINTING $0 $@ exit.jsh; exit
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! Java 8 deprecated incremental CMS 
– Removed in Java 9 

! Java 9 deprecated CMS 

! Default GC is now G1GC instead of Parallel Throughput 
– G1GC is child's play to configure 

• Set maximum pause time 
• Set maximum heap 
• You're done!

GC Changes

28



Safely Shoot Yourself in the Foot with Java 9
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

! Let's say we want to make square() public 
– Java 8, we could patch our version in using -Xbootclasspath 
– Java 9, we need to create a patch for java.base

Hacking BigInteger

29
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! Step 1: Compile the hacked BigInteger version 

– (Optional) Dependency in IntelliJ to shut off compiler warnings 

! Step 2: Compile our code against the patched BigInteger 

! Step 3: Run our code against the patched BigInteger 

Hacking BigInteger

30

javac --patch-module java.base=BigMathHack/src   \ 
   -d BigMathHack/mypatches/java.base BigMathHack/src/java/math/BigInteger.java

javac --patch-module java.base=BigMathHack/mypatches/java.base   \ 
   -d out/production/FootShootJava9 --source-path src src/BigIntegerTest.java

java --patch-module java.base=BigMathHack/mypatches/java.base   \ 
  -cp out/production/FootShootJava9 BigIntegerTest
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Questions?
Dr Heinz M. Kabutz 

Email: heinz@javaspecialists.eu 
Twitter: @heinzkabutz
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! Free license to latest mini-course on Java.NIO using Java 9 

! Free subscription to The Java Specialists Newsletter 

! http://tinyurl.com/javaday17

Expires End Of This Talk
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